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Abstract. As neural networks have taken on a critical role in real-
world applications, formal verification is earnestly needed to guarantee
the safety properties of the networks. However, it remains challenging
to balance the trade-off between precision and efficiency in abstract in-
terpretation based verification methods. In this paper, we propose an
abstract refinement process that leverages the convex hull techniques
to improve the analysis efficiency. Specifically, we introduce the dou-
ble description method in the convex polytope domain to detect and
eliminate multiple spurious adversarial labels simultaneously. We also
combine the new activation relaxation technique with the iterative ab-
stract refinement method to compensate for the precision loss during
abstract interpretation. We have implemented our proposal into a verifi-
cation framework named ARENA, and assessed its effectiveness by con-
ducting a series of experiments. These experiments show that ARENA
yields significantly better verification precision compared to the existing
abstract-refinement-based tool DeepSRGR. It also identifies falsification
by detecting adversarial examples, with reasonable execution efficiency.
Lastly, it verifies more images than the state-of-the-art verifier PRIMA.

Keywords: Abstract Refinement · Double Description Method · Neural
Network Verification.

1 Introduction

As neural networks have been proverbially applied to safety-critical systems, for-
mal guarantee about the safety properties of the networks, such as robustness,
fairness, etc., is earnestly needed. For example, researchers have been working
on robustness verification of neural networks, to ascertain that the network clas-
sification result can remain the same when the input image is perturbed subtly
and imperceptibly during adversarial attacks [1, 2].

There exists sound and complete verification techniques where the robustness
property can be ascertained but regrettably at high complexity and execution
cost [3,4]. For better scalability, several incomplete verifiers have been proposed
to analyze larger networks with abstract interpretation technique while bearing
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exactness sacrifices [5–7]. To mitigate this shortcoming, there have been inves-
tigations into better convex relaxation [8,9] or iterative abstract refinement [10]
to make up with the precision loss in abstract interpretation techniques.

This work is inspired by the counterexample guided abstraction refinement
(CEGAR) method [11] in program analysis, aiming to improve the precision of
abstract interpretation results by identifying spurious counterexamples: these are
examples which appear to have violated desired analysis outcome – due to over-
approximated calculation inherent in the abstract interpretation computation –
but can be shown to be fake by the refinement method. Proof of the existence
of spurious counterexamples can diminish the range of inconclusive results pro-
duced by abstract interpretation. In the context of neural network verification,
such spurious counterexamples can be conceptualized as adversarial regions that
are perceived to have lent support (spuriously) on certain adversarial labels; ie.,
labels which differ from the designated label in the robustness test.

An existing work that has successfully employed abstract refinement tech-
nique to improve the precision of the abstract-interpretation based verification
tool is DeepSRGR [10]. That work repetitively selects an adversarial label and
attempts to eliminate the corresponding spurious region progressively through
iteration of refinements. Technically, it encodes a spurious region as a linear in-
equality, adds it to the constraint encoding of the network, and employs linear
programming with the objective set to optimize the concrete bounds of selected
ReLU neurons in the network. This process is repeated until either the spurious
region is found to be inconsistent with the encoded network, or time out.

In this paper, we enhance the existing effectiveness of DeepSRGR by intro-
ducing convex hull techniques (ie., techniques that observe and conform to con-
vex property) to abstract refinement computation. Together, these techniques
facilitate simultaneous elimination of multiple spurious regions, and capitalize
the dependencies among ReLU neurons. Specifically, we tighten the looseness of
ReLU approximation during abstract refinement process through a mutli-ReLU
convex abstraction technique (cf. [9]) that captures dependencies within a set
of ReLU neurons. Moreover, we leverage a double-description method (cf. [12])
used in convex polytope computation to eliminate multiple spurious regions si-
multaneously; this circumvents the challenges faced with the application of linear
programming technique to optimize disjunction of linear inequalities.

We have implemented our proposed techniques in a CPU-based prototypical
analyzer named ARENA (Abstract Refinement Enhancer for Neural network
verificAtion). In addition to verifying the robustness property of a network with
respect to an image, ARENA is also capable of detecting adversarial examples
that ascertain the falsification of the network property. We conducted experi-
ments to assess the effectiveness of ARENA against the state-of-the-art tools,
including the CPU-based verifiers DeepSRGR [10] and PRIMA [9], and the GPU-
based verifier α, β-CROWN [13]. The results show conclusively that ARENA
returns an average of 15.8% more conclusive images compared with DeepSRGR
while terminates in comparable amount of time; and it also outperforms PRIMA
by returning 16.6% more conclusive images. Furthermore, ARENA can verify or
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falsify 79.3% images of that of the state-of-the-art complete tool α, β-CROWN
on average for selected networks.

We summarize our contributions below:

� We adapt the double description method proposed in the convex polytope
domain [12] to solve disjuncts of constraints in Linear Programming (LP)
encoding, allowing us to prune multiple adversarial labels together to increase
overall efficiency.

� We leverage the multi-ReLU convex abstraction in PRIMA [9] to further
refine the abstraction in the analysis process to increase verification precision.

� We utilize the solutions returned by the LP solver to detect adversarial ex-
amples and assert property violation when counter-examples are discovered.

� We conducted experiments comparing our prototypical analyzer ARENA
against state-of-the-art verification tools, and demonstrate high effectiveness
in our verification framework. To the best of our knowledge, ARENA outper-
forms the current state-of-the-art approximated methods that run on CPU.

In the remaining part of the paper, we give an illustrative example showing
the overall process of our method in Section 2, followed by a formal description
of our methodologies in Section 3. We demonstrate our evaluation process and
experimental results in Section 4. Section 5 discusses the current limitation, plan
for future work and the generalization of our work. We give a literature review
in Section 6, which contains closely related works with respect to our research
scope. Finally, we summarize our work and conclude in Section 7.

2 Overview

In this section, we first describe the abstract refinement technique implemented
in DeepSRGR [10]. Then, we discuss its limitations and introduce our approach
to overcome them. Table 1 displays the notations we use throughout this section.

Π the network constraint set/encoding

Υ a potential adversarial region

P the over-approximate convex hull

Table 1: Notations and descriptions of Section 2

2.1 Spurious Region Guided Refinement

DeepSRGR is a sound but incomplete verification method that relies on the
polyhedral abstract domain in DeepPoly [7], where the abstract value of each
network neuron xi is designed to contain four elements (li, ui, l

s
i , u

s
i ). The con-

crete lower bound li and upper bound ui pair forms a closed interval [li, ui] that
over-approximates all the values that neuron xi could take. The symbolic con-
straints lsi , u

s
i are linear expressions of xi defined over preceding neurons with

the requirement that lsi ≤ xi ≤ usi .
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In the following, we illustrate the verification process where the abstract
domain is used to verify the robustness property of a fully-connected network
with ReLU activation (Figure 1) w.r.t the input space I = [−1, 1]× [−1, 1] of 2
input neurons x1, x2. This network has 3 output neurons y1, y2, y3, correspond-
ing to the three labels L1, L2, L3 that an input in I can be classified as. Here,
the robustness property which we aim to verify is that the neural network can
always classify the entire input space I as label L1, which corresponds to the
output neuron y1. More specifically, the verifier should be able to prove that the
conditions y1 − y2 > 0 and y1 − y3 > 0 always hold for the entire input space I.
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y3 ≤ 0.5x5 + 1

y3 ≥ 0

Fig. 1: The example network to perform DeepPoly abstract interpretation

Through the abstract interpretation technique, as deployed by DeepPoly,
we can compute the abstract values for each neuron; these are displayed near
the corresponding nodes. Specifically, the computed value for the lower bound of
y1−y2 and y1−y3 are both −0.2 (the process of the lower bound computation is
provided in Appendix A), which fails to assert that y1− y2 > 0 and y1− y3 > 0.
In other word, DeepPoly cannot ascertain the robustness of the network for
the given initial input space I. Given the over-approximation nature of abstract
interpretation technique, it is not clear if the robustness property can be verified.

In order to further improve the robustness verification of the considered neu-
ral network, DeepSRGR conducts a spurious region guided refinement process
that includes the following steps:

1. Obtain the conjunction of all linear inequities that encode the network, in-
cluding the input constraint x1, x2 ∈ [−1, 1] and the constraints within the
abstract values of all neurons (i.e., the constraints in Figure 1). We denote
this network encoding constraint set as Π.
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2. Take the conjunction of the current network encoding and the negation of the
property to solve a potential spurious region. For example, the feasible region
of Π ∧ (y1 − y2 ≤ 0) refers to a potential adversarial region (denote as Υ )
that may contain a counterexample with adversarial label L2 (corresponding
to output neural y2); whereas the region outside of Υ is already a safe region
that will not be wrongly classified as L2. However, the region Υ may exist
only due to the over-approximate abstraction but does not contain any true
counterexample. Therefore, this region is spuriously constructed and could
be eliminated. If we successfully eliminate Υ , then we can conclude that label
L2 will not be a valid adversarial label since y2 never dominates over y1.

3. To eliminate the region Υ , DeepSRGR uses the constraints of the region to
refine the abstraction using linear programming (LP). For instance, we take
Π and y1 − y2 ≤ 0 as the constraint set of linear programming. To obtain
tighter bounds for input neurons and unstable ReLU neurons1, we set the
objective function of LP as min(xi) and max(xi) where i ∈ [1, 2, 4]. The
new solved intervals are highlighted in red in Figure 2, where all the current
neuron intervals now specify the region Υ .
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Fig. 2: The effect of applying LP-based interval refinement (in red marked by ∗)

4. DeepSRGR leverages those tighter bounds to guide the abstract interpre-
tation of the region Υ in the next iteration. It performs a second run on
DeepPoly and makes sure that this second run compulsorily follows the new
bounds computed in the previous step. As shown in Figure 3, the blue col-
ored part refers to the updated abstract values during the second execution
of DeepPoly, where the abstraction of all neurons are refined due to the

1 Unstable ReLU neuron refers to a ReLU neuron whose input range can be both
negative and positive (like y2, y3).
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tighter bounds (red colored part) returned by LP solving. Now the lower
bound of y1 − y2 is 0.7, making y1 − y2 ≤ 0 actually infeasible within the
region Υ . Therefore, we conclude that Υ is a spurious region that does not
contain any true counterexample, and we can eliminate adversarial label L2.

5. If we fail to detect y1 − y2 ≤ 0 to be infeasible, DeepSRGR iterates the
process from step 2-4 where it calls LP solving and re-executes DeepPoly
on the new bounds until it achieves one of the termination conditions: (i) It
reaches the maximum number of iterations (DeepSRGR sets it to be 5 by
default); or (ii) it detects infeasibility for the spurious region.
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Fig. 3: Results of the second run of DeepPoly (in blue marked by †)

Similarly, after eliminating the adversarial label L2, DeepSRGR will apply
the same process to eliminate the spurious region defined by Π ∧ (y1 − y3 ≤ 0),
which corresponds to the output neural y3 and the adversarial label L3.

In summary, DeepSRGR uses iterative LP solving and DeepPoly execution
to attempt to eliminate spurious regions which do not contain counterexamples.
Assuming the ground-truth label to be Lc, DeepSRGR runs this refinement
process for each region Π ∧ (yc − yt ≤ 0) where t 6= c. If DeepSRGR is able to
eliminate all adversarial labels related to output neurons yt where t 6= c, then
it successfully ascertains the robustness property of the image. If DeepSRGR
fails to eliminate one of the adversarial labels within the iteration boundary, the
robustness result remains inconclusive.

2.2 Scaling up with multiple adversarial label elimination

We mention three contributions in Section 1 including efficiency improvement,
precision improvement and adversarial example detection. In this section, we
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only give an overview of our multiple adversarial label elimination method which
aims to improve the analysis efficiency; we defer the discussion of the remaining
part of our system to Section 3.

As mentioned in Section 2.1, DeepSRGR invokes the refinement process to
sequentially eliminate each spurious region Π ∧ (yc− yt ≤ 0), which corresponds
to the adversarial label Lt (t 6= c). For an n-label network, it requires n−1 refine-
ment invocations in the worst case, with each invocation taking possibly several
iterations. To speed up the analysis, we eliminate multiple spurious regions at
the same time in one refinement process.

For example, we aim to detect infeasibility in Π ∧ ((y1− y2 ≤ 0)∨ (y1− y3 ≤
0)) so as to eliminate both adversarial labels L2 and L3 simultaneously. The
technical challenge behind this multiple adversarial label elimination is that linear
programming does not naturally support the disjunction of linear inequalities.
To address this challenge, we compute the over-approximate convex hull P of
(y1−y2 ≤ 0)∨(y1−y3 ≤ 0) under network encoding Π. As P will be represented
as a set of linear inequalities, linear programming is amenable to handle Π ∧P .

y2
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y1

(0.8, 2, 0)
(0.8, 0, 2)

(4.8, 2, 0)

(4.8, 0, 2)

(a) The initial cubic polytope under Π
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(0.8, 0.8, 2)

(2, 2, 0)

(b) The (y1 − y2 ≤ 0) polytope under Π

y2
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(0.8, 2, 0.8)

(2, 0, 2)

(0.8, 0, 2)

(c) The (y1 − y3 ≤ 0) polytope under Π

y2
y3

y1

(0.8, 0, 2)

(2, 0, 2)

(0.8, 2, 0)

(2, 2, 0)

(d) The convex hull of union of (b),(c)

Fig. 4: The convex polytopes under network encoding, with respect to (y1, y2, y3).

In detail, the initial convex polytope associated with y1, y2, y3 is a 3-D cube
pictured in Figure 4a, where y1 ∈ [0.8, 4.8], y2 ∈ [0, 2], y3 ∈ [0, 2] after we perform
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DeepPoly as shown in Figure 1. The convex polytope for the constraint y1−y2 ≤
0 under the network encoding Π corresponds to the shape in Figure 4b where
y1−y2 ≤ 0 is a cutting-plane imposed on the initial cube in Figure 4a. Similarly,
the projection of y1−y3 ≤ 0 to a convex polytope can be visualized in Figure 4c.
We further compute the over-approximate convex hull P of the union of the two
polytopes as in Figure 4d.

We can observe that P is defined by 8 vertices (annotated as eight black
extreme points). It is worth-noting that these 8 vertices actually come from either
vertices in Figure 4b or vertices in Figure 4c. We will provide the explanation
and the theory on how to compute the convex hull of the union of two polytopes
in Section 3.2. Explicitly, P can also be represented by the following constraint
set (1), which correspond to the 7 red-colored surfaces in Figure 4d:

−y1 + y2 + y3 ≥ 0 y2 ≥ 0 y3 ≥ 0 −1 + 1.25y1 ≥ 0
2− y1 ≥ 0 2− y2 ≥ 0 2− y3 ≥ 0

(1)

We take the network encoding Π and constraint set of P as the input to
the LP solver, and conduct interval solving as in Section 2.1. We annotate the
new bounds obtained through LP solving as red color, and the updated abstract
values after the second abstract interpretation as blue color in Figure 5. The
lower bounds of both y1−y2 and y1−y3 now become 0.2, making it infeasible to
achieve y1− y2 ≤ 0 or y1− y3 ≤ 0. Therefore, we successfully do the verification
with just one refinement process invocation.
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Fig. 5: The new intervals (in red with ∗) with two-adversarial labels encoding
and new abstraction introduced by the second run of DeepPoly (in blue with †)
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3 Methodologies

As described in Section 2, we identify the feasible region of the network encoding
and the negation of a property (i.e. Π ∧ (yc − yt ≤ 0) : t 6= c) as a potential
spurious region and leverage the refinement process to ascertain and possibly
eliminate such spurious regions. To further improve the precision and efficiency,
we propose three techniques as we have summarized in Section 1:

1. We update the negation of the property encoding to capture multiple spuri-
ous regions at the same time, as we demonstrate the example on (y1 − y2 ≤
0) ∨ (y1 − y3 ≤ 0) in Section 2.2. This method allows us to reuse the linear
programming part among several spurious regions and improve efficiency.

2. We leverage the multi-ReLU convex abstraction proposed in PRIMA [9]
to obtain a more precise network encoding Π, which helps to increase the
verification precision.

3. We detect adversarial examples to falsify robustness property. In particular,
as the LP solver finds the conjunction of the network encoding and the nega-
tion of the property to be feasible, its optimization solution could actually
ascertain a property violation and help us conclude with falsification.

We will discuss the three methodologies in separate subsections, and conclude
this section with an overall description of our verification framework ARENA.
Table 2 shows the notations we use in the main text of this section.

Π the network constraint set/encoding

Ω the multi-ReLU constraint set

Λ the involved variable set during convex computation

Θ the initial multidimensional octahedra during convex computation

PHi the convex polytope in H-representation

PVi the convex polytope in V-representation

Table 2: Notations and descriptions of Section 3

3.1 Multi-ReLU network encoding

As mentioned before, the constraint set subject to linear programming resolution
is a conjunction of the network encoding and the negation of the property. In
this subsection, we describe our network constraint construction. In the next
subsection, we will describe the encoding of the negated property. Particularly,
we capture the dependencies between the ReLU neurons in the same layer in our
network encoding by leveraging the multi-ReLU convex relaxation in PRIMA.
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y

x

y = max(0, x)

lx ux

Fig. 6: The triangle approximation of a single ReLU neuron

As depicted in Figure 6, DeepSRGR uses a triangular shape to encode each
ReLU neuron independently, where the ReLU node y = max(0, x) with x ∈
[lx, ux]. The triangular shape is defined by three linear constraints:

y ≥ x y ≥ 0 y ≤ ux

ux−lx (x− lx)

This looseness of ReLU encoding can inhibit precision improvement in Deep-
SRGR. As a matter of fact, it has been reported that, when they increase the
maximum number of iterations from 5 to 20, only two more properties can be
verified additionally, and no more properties can be verified when they further
increase from 20 to 50 [10].

To break this precision barrier, we deploy the technique of multi-ReLU re-
laxation in PRIMA [9] where they compute the convex abstraction of k-ReLU
neurons via novel convex hull approximation algorithms. For instance, if k = 2
and the ReLU neurons in the same layer are denoted by y1, y2, and the inputs to
these two ReLU neurons are x1, x2 respectively, PRIMA will compute a convex
hull in (y1, y2, x1, x2) space to capture the relationship between the two ReLU
neurons and their inputs. An example of the convex hull is defined as:

Ω = { x1 + x2 − 2y1 − 2y2 ≥ −2, 0.375x2 − y2 ≥ −0.75,
−x1 + y1 ≥ 0, −x2 + y2 ≥ 0, y1 ≥ 0, y2 ≥ 0 }

As we can see, Ω contains the constraint x1 + x2 − 2y1 − 2y2 ≥ −2 that
correlates (y1, y2, x1, x2) all together, which is beyond the single ReLU encoding.
In general, PRIMA splits the input region into multiple sub-regions and then
computes the convex hull of multiple ReLU neurons. For example, splitting the
input region along x1 = 0 results in two sub-regions where y1 = x1 (y1 is
activated) and y1 = 0 (y1 is deactivated). In each sub-region, the behavior of
y1 is determinate and this yields a tighter or even exact convex approximation.
Finally, PRIMA computes a joint convex over-approximation (as in Ω) of the
convex polytopes computed for each sub-region.

For deployment, we consider 3-ReLU neurons in our paper. We filter out
the unstable ReLU neurons in each ReLU layer, and divide them into a set of
3-ReLU groups with one overlapping neuron between two adjacent groups as
shown in Figure 7, where a dashed box identifies a 3-ReLU group. We then
leverage PRIMA to compute the constraints for each 3-ReLU group, and add
those additional constraints into the original network encoding in order to obtain
a more precise network abstraction and better verification precision.
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y1i y2i y3i y4i y5i y6i y7i · · · · · ·

Fig. 7: The 3-ReLU grouping for unstable ReLU neurons in the same layer i,
where we use PRIMA to compute the convex relaxation for each group.

3.2 Multiple adversarial label elimination

We now explain how we encode the negated property, especially when we take
multiple spurious regions into consideration. As demonstrated in Section 2.2, to
make it amenable for LP encoding, we need to compute the over-approximate
convex hull of the union of multiple convex polytopes like in Figure 4d. To ex-
plain the theory behind, we first introduce the required knowledge with respect
to convex polytope representation. The convex polytope in this paper refers
to a bounded convex polytope that is also a convex region contained in the
n−dimensional Euclidean space Rn. There are two essential definitions of a con-
vex polytope: as the intersection of half-space constraints (H-representation) and
as the convex hull of a set of extremal vertices (V-representation) [14].

H-representation. A convex polytope can be defined as the intersection of
a finite number of closed half-spaces. A closed half-space in an n-dimensional
space can be expressed by a linear inequality:

a1x1 + a2x2 + · · ·+ anxn ≤ b (2)

A closed convex polytope can be taken as the set of solutions to a linear
constraint set, just like the constraint set (1) shown in Section 2.2.

V-representation. A closed convex polytope can also be defined as the
convex hull with a finite number of points where this finite set must contain the
set of extreme points of the polytope (i.e. the black-colored dots in Figure 4d).

Double description. The Double description method [12] aims to maintain
both V-representation and H-representation during computation. This “dupli-
cation” is beneficial because to compute the intersection of two polytopes in
H-representation is trivial since we only need to take the union set of the half-
space constraints. On the other hand, to compute the convex hull of the union
of two polytopes is trivial in V-representation as we take the union set of the
vertices. The program cddlib2 is an efficient implementation of the double de-
scription method, which provides functionalities that enable transformation from
V-representation to H-representation (named as convex hull problem); and vice
versa (named as vertex enumeration problem).

We leverage this V-H transformation in cddlib to compute the convex hull of
the union of multiple convex polytopes. We set up a batch size δ to be in [2, 5]3,

2 https://github.com/cddlib/cddlib
3 We explain our parameter range setting in Section 5 and also provide the batch size

study experiments in Section 4.4.

https://github.com/cddlib/cddlib
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which defines the number of spurious regions to be considered simultaneously.
Assume that the ground truth label is Lc, the related adversarial labels are
L1, · · · , Lδ, the convex-hull computation of (yc − y1 ≤ 0) ∨ · · · ∨ (yc − yδ ≤ 0) is
conducted as follows:

Polytope computation for each spurious region. We compute the H-
representation of the polytope for each spurious region in the (δ+1)-dimensional
space with respect to the variable set Λ = yc, y1, · · · , yδ. Intuitively, we obtain
the H-representation of polytope (yc− yi ≤ 0) by taking the interval constraints
of Λ (which is a multidimensional cube) conjunct with yc−yi ≤ 0, as our example
in Figure 4. But this encoding is coarse as we neglect the dependencies between
Λ that are in the same layer. For a more precise encoding, we follow the idea
of [8] and compute the multidimensional octahedra Θ of yc, y1, · · · , yδ, which
yields 3δ+1 − 1 constraints defined over Λ. Therefore, the H-representation of
polytope (yc − yi ≤ 0) will be the constraint set Θ and yc − yi ≤ 0.

Union of convex polytopes. We obtain the H-representation of the δ
polytopes in the previous step and denote them by PH1 , · · · , PHδ respectively.
Since the union of polytopes is trivial in V-representation – as mentioned earlier,
we use the H-V transformation in cddlib to generate these V-representations of
the δ polytopes (referred to as PV1 , · · · , PVδ ). As illustrated in Figure 8, we
then produce the union set PVu of these vertices sets and transform it to its
H-representation PHu , which is the convex hull of the union of δ polytopes. As
PHu is represented by a set of linear inequalities, we conjunct it with the network
encoding Π and submit the constraints for LP solving.

PH1

...

PHδ

PV1

...
...

PVδ

HtoV

HtoV

PVu

∪

∪

∪
PHu

VtoH

Fig. 8: The convex hull computation of the union of δ convex polytopes

3.3 Adversarial example detection

As mentioned previously, we take the conjunction of the network encoding and
the negation of the property as the input constraint set to the LP solver and aim
to eliminate spurious region(s) when detecting infeasibility. On the other hand,
when the constraint set is feasible, we can set the input neurons and the unstable
ReLU neurons as objective function and try to resolve for tighter intervals. In
fact, a feasible constraint set indicates the possibility of a property violation.
The LP solver not only returns the optimized value of the objective function, it
also returns a solution that leads to the optimization, which could be a potential
counter-example of robustness. Therefore, we include a supplementary procedure
that takes each optimal solution obtained from the LP solver and checks if it
constitutes an adversarial example.
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This process brings forth two benefits: (1) it detects counter-examples and
asserts the violation of robustness; (2) it enables the process to terminate early
with falsification (once a counter-example is discovered) instead of exhausting
all the iterations.

3.4 The Verification Framework ARENA

We now present an overview of our verification framework ARENA. In addition
to the implementation of the three main technical points covered earlier, our
framework includes the following optimizations as well.

Algorithm 1: Overall analysis procedure in ARENA

Input:
– N : input neural network with input layer γin, and output neurons y1, ..., yn
– yc: the output neuron corresponding to the ground truth label Lc (1 ≤ c ≤ n)
– δ is the refinement batch size (the number of adversarial labels to be eliminated

by batch in each iteration).
Output: Verification result (Verified for robustness verified, Falsified for
robustness violated, Inconclusive for inconclusive result).

1: (res,AN )← VerifyByDeepPoly(N) // Result and network abstraction
2: if res = Verified then
3: return Verified
4: else
5: Π ← GetConstraintsInNetwork(N , AN )
6: Ladv ← {Li |IsFeasible(Π ∧ yc − yi ≤ 0), ∀i 6= c} // All adversarial labels
7: Ladv ← SortByEstimatedSpuriousRegionSize(Ladv) // Sort decreasingly
8: Lelim ← ∅; i← 0; iter num← 999 // Initialization
9: while i < Length(Ladv) do

10: if iter num > 2 then
11: status, iter num ← RefineWithKReLU(N,Π,Lc,Ladv[i],Lelim)
12: if status = Falsified or status = Inconclusive then
13: return status
14: else // status = Verified
15: Lelim ← Lelim ∪ {Ladv[i]}
16: i← i+ 1
17: else
18: L′ ← GetNextAdversarialLabelBatch(Ladv, δ)
19: status ← EliminateAdversarialLabels(N,Π,Lc,L′,Lelim)
20: if status = Falsified or status = Inconclusive then
21: return status
22: else // status = Verified
23: Lelim ← Lelim ∪ {L′}
24: i← i+ SizeOf(L′)
25: if Lelim = Ladv then
26: return Verified
27: else
28: return Inconclusive
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Optimization 1: Prioritising elimination of larger spurious regions. We
choose to order the sequence of the spurious regions according to the descending
order of the respective regions’ sizes, by eliminating the “toughest” spurious
region first. Since robustness only holds when all spurious regions are eliminated,
we terminate the refinement process early if we fail to prune a larger spurious
region. As it is difficult to compute the actual size of the spurious region, we
deploy the metric in DeepSRGR where they take the lower bound of expression
yc − yi given by DeepPoly as the estimation of the region size, i.e. the smaller
this value is, the larger the region is likely to be and thus it would be tougher
for us to eliminate the region.

Optimization 2: Cascading refinement. Our system is designed to apply in-
creasingly more scalable and less precise refinement methods. We hereby define
process RefineWithKReLU as the refinement method with multi-ReLU encoding
for the network and multi-adversarial label pruning feature disabled. Similarly,
process EliminateAdversarialLabels(δ) is the refinement method with multi-ReLU
encoding, and taking into consideration δ spurious regions simultaneously. With
additional over-approximation error potentially being introduced by computing
the union of polytopes, EliminateAdversarialLabels(δ) is less precise method com-
pared to RefineWithKReLU but more scalable as it eliminates δ spurious regions
simultaneously. We first use RefineWithKReLU to eliminate the larger spurious
regions and record the number of iterations ς required to prune the current
spurious region. If ς ≤ 2, this indicates that it is rather amiable to prune the
current spurious region, and affordable to call upon EliminateAdversarialLabels(δ)
to eliminate the remaining smaller spurious regions.

We present the overall analysis procedure in Algorithm 1. To begin with, we
only apply the refinement process to images that fail to be verified by Deep-
Poly (lines 4). For refinement, we first obtain all the network constraints gen-
erated during abstract interpretation (line 5) and all potential adversarial la-
bels (line 6). Then we call upon the processes RefineWithKReLU (line 11) or
EliminateAdversarialLabels(δ) (line 19) to eliminate one or multiple spurious re-
gions as stated in optimization 2 mechanism. The analyzer returns “Falsified”
value if it detects an adversarial example (lines 13, 21); or it returns “Inconclu-
sive” value if it fails to eliminate one of the adversarial labels and fails to find
a counter-example (lines 13, 21, 28). We declare verification to be successful if
and only if we can eliminate all the adversarial labels (lines 25-26).

Details of the two refinement processes are presented in Algorithms 2 and
3 (in Appendix B). These two algorithms only differ in the property encoding
(line 3-4 in Algorithm 3 vs lines 3-4 in Algorithm 2). Reading Algorithm 2 more
closely: it first computes the convex hull of the union of the spurious regions
according to Section 3.2 (line 3). Next, it conjuncts the convex hull with the
network encoding in line 4, and add constraint yc − yt > 0 for each of the
previously eliminated adversarial label Lt (lines 5-6); this helps to reduce the
solution space further. If the combined constraint set Σ is found to be infeasible,
the process returns “verified” since violation of the property cannot be attained
(lines 7-8). But if Σ is feasible, the process leverages it to further tighten the
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bounds for input and unstable ReLU neurons and updates the network (lines 9,
14). Moreover, the process checks if each LP solution is a valid counter-example;
if so, it returns “Falsified” (lines 10-11, 15-16). With the newly solved bounds, the
process then re-runs DeepPoly to obtain a tighter network encoding (lines 17-18)
that is more amenable to encounter infeasibility in the latter iterations. Finally,
the process returns “inconclusive” if it fails to conclude within the maximum
number of iterations (line 20).

Algorithm 2: The refinement procedure EliminateAdversarialLabels

Function Name: EliminateAdversarialLabels(N,Π,Lc,L′,Lelim)
Input:

– N : input neural network with input layer γin, and output neurons y1, ..., yn
– Π: the constraint set of N
– yc: the output neuron corresponding to the ground truth label Lc (1 ≤ c ≤ n)
– L′, Lelim: the batch of adversarial labels to be refined, and the list of previously

eliminated labels
Output: the refinement status

counter = 0
while counter < τ do // τ is an iteration threshold
PHu ← ComputeConvexHull(N,L′) // PHu is the convex hull of polytopes
Σ ← Π ∧ PHu // Initialize constraint set
for all Lt ∈ Lelim do
Σ ← Σ ∧ (yc − yt > 0)

if IsInfeasible(Σ) then
return Verified

N ← LPSolveInputInterval(Σ, γin) // Update network with new bounds
if ExistsAnAdversarialExample(N) then

return Falsified
for all ReLU layer γ′k in N do
γk ← GetPrecedingInputAffineLayer(γ′k)
N ← LPSolveUnstableReLUs(Σ, γk) // Update new bounds
if ExistsAnAdversarialExample(N) then

return Falsified
A← RecomputeNetworkAbstractionByDeepPoly(N)
Π ← GetConstraintsInNetwork(N,A)
counter = counter + 1

return Inconclusive

4 Experiments

We implemented our method in a prototypical verifier called ARENA in both C
and C++ programming languages (C++ is used for the k-ReLU computation
feature, while the rest of the system is implemented in C). Our verifier is built on
top of DeepPoly in [15]: it utilizes DeepPoly as the back-end abstract interpreter
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for neural networks. Moreover, it uses Gurobi4 version 9.5 as the LP solver for
constraints generated during abstract refinement.

We evaluate the performance of ARENA with state-of-the-art CPU-based
verifiers including DeepSRGR [10], PRIMA [9], and DeepPoly [7]. Furthermore,
we compare with α, β-CROWN [13], which is GPU-based and the winning tool
of VNN-COMP 2022 [16]. The evaluation machine is equipped with two 2.40GHz
Intel(R) Xeon(R) Silver 4210R CPUs with 384 GB of main memory and a
NVIDIA RTX A5000 GPU. The implementation is 64-bit based.

Note that DeepSRGR [10] was purely implemented in Python, while the
main analysis in ARENA, PRIMA and DeepPoly were implemented in C/C++.
Furthermore, this original version of DeepSRGR does not support convolutional
networks nor the ONNX network format in our benchmark. Therefore, to avoid
any runtime discrepancy introduced by different languages and to support our
tested networks, we re-implemented the refinement technique of DeepSRGR in
C, and conducted the experiment on the re-implemented DeepSRGR, where we
release our re-implementation of DeepSRGR at this link: https://github.com/
arena-verifier/DeepSRGR. The source code of our verifier ARENA is available
online at: https://github.com/arena-verifier/ARENA.

4.1 Experiment setup

Evaluation datasets and testing networks. We chose the commonly used
MNIST [17] and CIFAR10 [18] datasets. MNIST is an image dataset with hand-
written digits, containing gray-scale images with 28×28 pixels. CIFAR10 includes
RGB three-channel images with size 32 × 32. Our testing image set consists of
the first 100 images of the test set of each dataset, which is accessible from [15].

We selected fully-connected (abbreviated as FC) and convolutional (abbre-
viated as Conv) networks from [15] as displayed in Table 3, with up to around
50k neurons. We explicitly list the number of hidden neurons, the number of
activation layers, trained defense5, and the number of candidate images for each
network. Here, the candidate images refer to those testing images that can be
correctly classified by the network and we only apply robustness verification on
the candidate images.

Robustness analysis. We conducted robustness analysis against L∞ norm
attack [19] with a perturbation parameter ε. Assuming that each pixel in the test
image originally takes an intensity value pi, it now takes an intensity interval
[pi − ε, pi + ε] after applying L∞ norm attack with a specified constant ε.

This naturally forms an input space defined by
�n
i=1[pi − ε, pi + ε], and all

the tools attempt to verify if all the “perturbed” images within the input space
will be classified the same as the original image by the tested network. If so, we
claim that the robustness property is verified. On the contrary, if we detect a

4 https://www.gurobi.com/
5 A trained defense refers to a defense method against adversarial samples, with the

purpose of improving the robustness property of the network

https://github.com/arena-verifier/DeepSRGR
https://github.com/arena-verifier/DeepSRGR
https://github.com/arena-verifier/ARENA
https://www.gurobi.com/
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Neural Net
ARENA DeepSRGR PRIMA DeepPoly

Verify Falsify Time Verify Time Verify Time Verify Time

M 3 100 63 5 87.65 54 68.76 69 123.73 24 0.105

M 5 100 77 7 250.39 67 153.75 53 19.15 25 0.522

M 6 100 45 6 650.10 38 324.14 38 173.03 23 0.280

M 9 100 44 10 1527.2 34 1004.4 34 191.60 30 0.587

M 6 200 48 3 1514.2 35 1312.3 34 222.45 25 0.313

M 9 200 43 6 3857.8 35 3536.7 29 238.63 29 0.536

M convSmall 69 7 176.93 66 251.27 70 84.23 31 0.605

M convMed 66 5 2054.9 60 2826.6 59 125.88 24 1.646

C 6 500 31 9 2703.3 24 3985.2 20 269.96 16 12.22

C convMed 31 7 3417.1 30 4385.4 30 230.74 21 3.87

Table 4: The number of verified/falsified images and average execution time (in
seconds) per image for MNIST and CIFAR10 network experiments

counter-example with a different classification label, we assert the falsification
of the robustness property. Finally, if we fail to conclude with verification or
falsification, we return unknown to the user, meaning that the analysis result is
inconclusive. We set up a challenging perturbation ε for each network and show
in Table 3.

Network Dataset Type ε #Layer #Neurons Defense Candidates

M 3 100 MNIST FC 0.028 3 210 None 98

M 5 100 MNIST FC 0.08 6 510 DiffAI 98

M 6 100 MNIST FC 0.025 6 510 None 99

M 9 100 MNIST FC 0.023 9 810 None 97

M 6 200 MNIST FC 0.016 6 1,010 None 99

M 9 200 MNIST FC 0.015 9 1,610 None 97

M convSmall MNIST Conv 0.11 3 3,604 None 100

M convMed MNIST Conv 0.1 3 5,704 None 100

M convBig MNIST Conv 0.306 6 48,064 DiffAI [20] 95

C 6 500 CIFAR10 FC 0.0032 6 3,000 None 56

C convMed CIFAR10 Conv 0.006 3 7,144 None 67

Table 3: Experimental Fully Connected and Convolutional Networks

4.2 Comparison with the CPU-based verifiers

We present the robustness analysis results for ten networks in Table 3 and we
describe the parameter configurations of our tool ARENA in Appendix C. To ex-
ecute PRIMA, we use the “refinepoly” domain in ERAN [15] and the parameter
setting of PRIMA are given in Appendix E.
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We report the experiment results drawn from different tools for MNIST and
CIFAR10 networks in Table 4. For ARENA, we report the number of verified
images, the number of falsified images and the average execution time for each
testing image. DeepSRGR does not detect adversarial examples, neither does
it attempt to assert violation of the property. PRIMA, on the other hand, re-
turns two unsafe image for one MNIST network only (the detailed results are
given in Appendix E). Thus we omit the falsification column from the report for
these two methods. Due to time limitation, for networks M 9 200, C 6 500 and
C convMed, we set a 2 hours timeout for each image. If the refinement process
fails to terminate before timeout, we consider the verification as inconclusive.

We observe from Table 4 that ARENA returns significantly more conclusive
images (including both verified and falsified images) for all the networks than
DeepSRGR, with comparable or even less execution time than that of Deep-
SRGR. ARENA also returns more conclusive images for all the networks than
PRIMA, except for the subject MNIST 3 100, where ARENA returns less veri-
fied images than PRIMA. Our in-depth investigation reveals that it is because
two out of the three hidden layers have their ReLU neurons being encoded exactly
with MILP in PRIMA.

These analysis results are better visualized in Figure 9 and Figure 10 in
Appendix D. As can be seen in Appendix D, ARENA generally returns more
conclusive images than the rest of the tools. On average, ARENA returns 15.8%
more conclusive images than DeepSRGR and 16.6% more conclusive images
than PRIMA respectively for the testing networks. In summary, to the best of
our knowledge, ARENA outperforms the current state-of-the-art approximated
methods that run on CPU.

4.3 Comparison with the GPU-based verifier α, β-CROWN

Furthermore, we compare with the state-of-the-art tool α, β-CROWN (alpha-
beta-CROWN) [13]. Note that this is a complete verification tool in the sense
that it will produce a conclusive answer given sufficient amount of time.

We started our experiments with the version of α, β-CROWN available in
August 2022. We report in detail here the average execution time for all tested
images, the number of verified images and falsified images in Table 5 with five
selected networks.

We rerun our experiments with the availability of the November 2022 ver-
sion of α, β-CROWN for all tested networks and present the results in Table 6.
In terms of execution speed, we observe that α, β-CROWN is much superior to
ARENA, mainly due to the deployment of GPU acceleration. In terms of the
numbers of verified and falsified images, we note that ARENA can verify or
falsify 79.3% of that of α, β-CROWN on average, for the upper seven subject
tests. For the last four subject tests, α, β-CROWN introduces MIP encoding
in their solution to capture exact ReLU functionality, and thus further enhanc-
ing the number of verified images. We are currently investigating techniques
for implementing ARENA on GPU, with the goal to improve the number of
verified/falsified images with reasonable time bound.
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Neural Net
ARENA α, β-CROWN

Verify Falsify Average Time Verify Falsify Average Time

M 3 100 63 5 87.65 54 11 25.15

M 5 100 77 7 250.3 53 10 48.67

M convSmall 69 7 176.9 39 16 3.06

M convMed 66 5 1625.9 30 18 2.90

M convBig 53 30 589.52 49 24 4.21

Table 5: The number of verified/falsified images and average execution time
for ARENA and α, β-CROWN (version dated Aug 2022), time is presented in
seconds

Neural Net
ARENA α, β-CROWN

Verify Falsify Average Time Verify Falsify Average Time

M 3 100 63 5 87.65 81 13 40.81

M 5 100 77 7 250.3 87 12 30.89

C 6 500 31 9 2703.3 21 20 600.2

C convMed 31 7 3417.1 36 22 283.7

M convSmall 69 7 176.9 83 16 9.10

M convMed 66 5 1625.9 82 18 7.24

M convBig 53 30 589.52 60 29 109.17

M 6 100 45 6 650.1 82 8 182.44

M 6 200 48 3 1514.2 87 4 313.37

M 9 100 44 10 1527.2 77 13 278.45

M 9 200 43 6 3857.8 79 9 455.53

Table 6: The number of verified/falsified images and average execution time of
all tested networks for ARENA and α, β-CROWN (version dated Nov 2022),
time is presented in seconds

4.4 Multi-adversarial label parameter study

In this experiment, we selected three networks from Table 3 to assess how the
batch size parameter δ may impact the verification precision and execution time.

Theoretically, a larger value of δ may lead to a more efficient analysis pro-
cess as it allows more adversarial regions to be eliminated at the same time.
However, setting the parameter to be δ requires the computation of the union of
δ convex polytopes. This in turn may introduce more over-approximation error
and may jeopardize the analysis precision. As δ aims to speed up the refinement
process, we present the number of images that are verified through iterative re-
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finement process and the average verification time for those refined images6. The
experimental results are shown in Table 7 where we compare among parameters
δ = 2, 3, 4, 5 and with multi-adversarial label feature being disabled (the same
as setting δ = 1).

Network
ARENA

(disabled) (δ=2) (δ=3) (δ=4) (δ=5)

VTR Time(s) VTR Time(s) VTR Time(s) VTR Time(s) VTR Time(s)

M 3 100 41 142.91 39 144.67 39 135.62 39 124.99 38 127.77

M 6 100 22 1414.4 22 1312.6 22 1250.5 22 1202.4 22 1047.9

M 6 200 26 4809.7 23 2552.2 23 1828.2 23 1663.2 23 1297.0

Table 7: The number of verified images through the refinement process (VTR)
and average verification time per refined image for different δ setting.

The experiment results show that the choice of a larger δ still allows us to
achieve closely comparable precision while requires less execution time. Since an
appropriate set-up of parameters leads to a better combination of precision and
efficiency, we describe our configuration of each tested network in Appendix C.

5 Discussion

We now discuss the limitation of our work. As described in Section 3.2, our
batch size parameter δ is bounded to 5 at maximum for both precision and
time-efficiency concern. In consideration for precision solely, as we compute the
over-approximate convex hull of the union of multiple convex polytopes, the
process will inevitably introduce additional over-approximate error into the LP
encoding, yielding coarser neuron intervals. Thus we bound the value of δ to
mitigate the degree of precision sacrifice. For time-efficiency issue, the transfor-
mation between V-representation and H-representation (refer to Section 3.2) –
in either direction – is generally NP-hard, thus incurring exponential overhead
with larger dimensions. As the parameter δ yields a (δ + 1)-dimensional space,
it is advisable to keep δ-value small so that the convex hull computation process
will not become an execution bottleneck. For future work, we will explore the
possibility of assigning δ dynamically for different networks to strike a better
trade-off between speed and precision.

Our proposed refinement process could be applied to other verification tech-
niques for improved precision, as long as they use linear constraints to approxi-
mate the underlying network [6, 8, 9].

6 As we only apply the refinement process to those testing images that DeepPoly fails
to verify, the “refined” images refers to those images that are successfully verified
through our refinement process, NOT through the original DeepPoly process.
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6 Related Work

Network verification methods can be generally categorized as complete or in-
complete methods. Complete methods conduct exact analysis over the network,
especially for ReLU-activated networks. Given adequate time and resources, the
complete methods return deterministic verification or violation of the robust-
ness property to the user. Typical existing works are usually SMT (satisfiability
modulo theory) based, MILP (mixed integer liner program) based or branch and
bound (BaB) based [3, 4, 21, 22]. For instance, β-CROWN [22] is a GPU-based
verifier which uses branch and bound method to enable exact reasoning over the
ReLU activation function. Furthermore, β-CROWN could also perform as an
incomplete verifier with early termination.

On the other hand, the incomplete methods choose to over-approximate the
non-linearity of the network using abstract interpretation or bound propagation
etc [6,7,23,24]. They are faced with precision loss due to the over-approximation
of network behaviour. Consequently, the analysis result becomes inconclusive
when the incomplete verifiers fail to verify the property. To rectify this defi-
ciency, researchers have proposed various techniques like [8–10]. The work in [8]
presents a new convex relaxation method that considers multiple ReLUs jointly
in order to capture the correlation between ReLU neurons in the same layer. This
idea has been further developed in PRIMA [9] which reduces the complexity of
ReLU convex abstraction computation via a novel convex hull approximation
algorithm. In comparison, DeepSRGR [10] elects to refine the abstraction in an
iterative manner, where it repeatedly uses the spurious regions to stabilize the
ReLU neurons until the abstraction is precise enough to eliminate the adversar-
ial label linked to that specified spurious region. In our work, we combine both
these refinement methods [9,10] to break the precision barrier and also leverages
the double-description method to retain efficiency as well.

7 Conclusion

We leverage the double description method in convex polytope area to com-
pute the convex hull of the union of multiple polytopes, making it amenable for
eliminating multiple adversarial labels simultaneously and boosting the analysis
efficiency. Furthermore, we combine the convex relaxation technique with the
iterative abstract refinement method to improve the precision in abstract inter-
pretation based verification system. We implemented our prototypical analyzer
ARENA to conduct both robustness verification and falsification. Experiment
results show affirmatively that ARENA enhances abstract refinement techniques
by attaining better verification precision compared to DeepSRGR, with reason-
able execution time; it also competes favourably in comparison with PRIMA.
Finally, it is also capable of detecting adversarial examples.

We believe that our proposed method can positively boost the effectiveness of
sound but incomplete analyses and be applied to other methods that use linear
constraints to approximate the network for effective precision enhancement.
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stract domain for certifying neural networks. Proceedings of the ACM on Program-
ming Languages, 3(POPL):41:1–41:30, 2019.

8. Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Be-
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A Back-substitution based bound computation in
DeepPoly

DeepPoly contains a back-substitution process in order to obtain more precise
neuron bounds. As described in Section 2.1, DeepPoly generates two symbolic
constraints for each neuron, where the constraints are defined over the preced-
ing connected neurons. To compute a more precise concrete bound, DeepPoly
recursively substitutes the symbolic constraints backward layer by layer until the
constraints are expressed in terms of the input neurons. During this process, the
constraints defined over neurons in that specific layer are generated and Deep-
Poly leverages those constraints to evaluate concrete bound values. The most
precise bound among all these layers will be selected as the final concrete bound
for the neurons.

For example, we consider the expression y1−y2 in Section 2.1 as an auxiliary
affine neuron xA = y1−y2. With the concrete intervals of y1, y2, we can estimate
the concrete bounds of xA to be:

−1.2 = l6 − u7 ≤ xA = y1 − y2 ≤ u6 − l7 = 4.8 (3)

We can back-substitute for xA until xA is defined over x3, x4, where we have:

−1.2 ≤ x3 − 0.5x4 − 1 ≤ xA ≤ x3 ≤ 4.8 (4)

Lastly, we express xA over input neurons x1, x2 and obtain:

−0.2 ≤ 0.5x1 + 1.5x2 + 1.8 ≤ xA ≤ x1 + x2 + 2.8 ≤ 4.8 (5)

As can be seen, the best lower bound we obtain is −0.2. Therefore, DeepPoly
will return −0.2 for the lower bound of expression y1−y2 in the example in Sec-
tion 2.1. Similar process will be applied to compute the lower bound of expression
y1 − y3.

B The algorithm of refinement process RefineWithKReLU

We hereby present the refinement function RefineWithKReLU in Algorithm 3,
where it only differs from Algorithm 2 in the property encoding (line 3-4 in
Algorithm 3 vs lines 3-4 in Algorithm 2). Algorithm 2 tries to encode multi-
ple adversarial labels at the same time, while this method only encodes one
adversarial label at one time (3-4).

In general, this method still aims to detect infeasibility of the network con-
straints and the negated property in order to refine the verification result (line
7-8). It leverages LP solving to refine the abstraction (line 9, 14), or find ad-
versarial examples with optimization solution returned by LP solver (line 10,
15).
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Algorithm 3: The algorithm for refinement process RefineWithKReLU

Function Name: RefineWithKReLU(N,Π,Lc,Ladv[i],Lelim)
Input:

– N : input neural network with input layer γin, and output neurons y1, ..., yn
– Π: the constraint set of N
– yc: the output neuron corresponding to the ground truth label Lc (1 ≤ c ≤ n)
– Ladv[i], Lelim: the adversarial label to be refined, and the list of previously

eliminated labels
Output: the refinement status and the number of iterations

1: counter = 0
2: while counter < τ do // τ is an iteration threshold
3: yj ← GetOutputNeuronOfLabel(Ladv[i])
4: Σ ← Π ∧ (yc − yj ≤ 0) // Initialize constraint set
5: for all Lt ∈ Lelim do
6: Σ = Σ ∧ (yc − yt > 0)
7: if IsInfeasible(Σ) then
8: return (Verified, counter)
9: N ← LPSolveInputInterval(Σ, γin) // Update network with new bounds

10: if ExistsAnAdversarialExample(N) then
11: return (Falsified, counter)
12: for all ReLU layer γ′k in N do
13: γk ← GetPrecedingInputAffineLayer(γ′k)
14: N ← LPSolveUnstableReLUs(Σ, γk) // Update new bounds
15: if ExistsAnAdversarialExample(N) then
16: return (Falsified, counter)
17: A← RecomputeNetworkAbstractionByDeepPoly(N)
18: Π ← GetConstraintsInNetwork(N,A)
19: counter = counter + 1
20: return (Inconclusive, counter)

C Parameter setting for ARENA

Our tool ARENA contains the following parameters controlling over the analysis
precision and efficiency:

– δ: defines the number of spurious regions to be considered simultaneously.
– cascade flag: we mentioned two optimizations in Section 3.4. While optimiza-

tion 1 is always activated, optimization 2 regarding cascading refinement can
be deactivated by setting this flag to be false. By doing so, we directly enable
the multiple adversarial label feature from the beginning of the refinement
process to achieve better speed-up for larger networks.

– early term flag: we contain an early termination principle that if the number
of updated ReLU neurons in the current iteration is zero, then we assume
that this image is extremely hard to be verified and early terminate the
analysis process without further time consumption; the principle will be
enabled while the flag is set to be true.

– sparse n: the number of neurons per layer to be grouped by 3-ReLU.
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We demonstrate the parameter setting for each of the tested networks as follows
in Table 8.

Neural Network batch size δ cascade flag early term flag sparse n

M 3 100 4 true false 70

M 5 100 5 true false 70

M 6 100 5 true false 70

M 9 100 5 false true 70

M 6 200 5 false true 70

M 9 200 5 false true 70

M convSmall 5 true true 100

M convMed 5 true true 100

M convBig 5 false true 0

C 6 500 5 false true 80

C convMed 5 true true 100

Table 8: The parameter configuration of ARENA

D Experiment result visualization

Our analysis results for MNIST networks are better visualized in Figure 10,
where we report in percentage the number of testing images with different re-
sults. As ARENA, DeepSRGR and PRIMA all invoke DeepPoly first, the verified
images by these three tools can be divided into these categories: the number of
images which are verified through DeepPoly (abbreviated as VTD in Figure 10),
verified through the refinement process (VTR), falsified through the refinement
process (FTR) and inconclusive images (INCON).

Similarly, the visualized results of CIFAR10 networks are shown in Figure 9.

(a) (b)

Fig. 9: Result comparison for CIFAR10 networks between ARENA, DeepSRGR,
PRIMA and DeepPoly.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10: Result comparison for MNIST networks between ARENA, DeepSRGR,
PRIMA and DeepPoly.
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We finally present the conclusive ratio of different tools for different networks
in Table 9, where the conclusive ratio is computed as:

the number of verified images + the number of falsified images

the number of candidate images
(6)

Neural Network ε ARENA DeepSRGR PRIMA

M 3 100 0.028 69.4% 55.1% 70.4%

M 5 100 0.08 85.7% 68.3% 56.1%

M 6 100 0.025 51.5% 38.3% 38.3%

M 9 100 0.023 55.7% 35.1% 35.1%

M 6 200 0.016 51.5% 35.3% 34.3%

M 9 200 0.015 50.5% 36.1% 29.9%

M convSmall 0.11 76% 66% 70%

M convMed 0.1 71% 60% 59%

C 6 500 0.0032 71.4% 42.8% 35.7%

C convMed 0.006 56.7% 44.7% 44.7%

Table 9: The conclusive ratio of ARENA, DeepSRGR and PRIMA

E Parameter setting and experiment results for PRIMA

The verification result of PRIMA depends on many parameters, we enumerate
the important parameters as follows:

– k: the number of neurons in the k-ReLU group;

– sparse n: the number of neurons per layer to be grouped by k-ReLU;

– partia milp: the number of layers to be encoded using MILP (mixed integer
liner program);

– max milp neurons: the max number of neurons to use for partial MILP en-
coding;

– timeout final lp: timeout for the final LP solver;

– timeout final milp: timeout for the final MILP solver.

In conducting our experiment, we deployed the parameter configuration for
one of the convolutional networks reported in their paper [9]. Here, the parame-
ters were set as k=3, sparse n=100, partial milp = 2, max milp neurons = 100,
timeout final lp = 20, timeout final milp = 200, where the results are displayed
in Table 10. In Section 4.2, we omitted the “Falsified” column for PRIMA since
only 2 unsafe image is found for one MNIST network.
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Neural Net ε
PRIMA

Verified Falsified Time(s)

M 3 100 0.028 69 0 123.73

M 5 100 0.08 53 2 19.15

M 6 100 0.025 38 0 173.03

M 9 100 0.023 34 0 191.60

M 6 200 0.016 34 0 222.45

M 9 200 0.015 29 0 238.63

M convSmall 0.11 70 0 84.23

M convMed 0.1 59 0 125.88

C 6 500 0.0032 20 0 269.96

C convMed 0.006 30 0 230.74

Table 10: The execution results for PRIMA


